§15. Аксиомы стереометрии и их простейшие следствия → номер 12
Четыре различных плоскости.
Плоскость задается тремя точками не лежащими на одной прямой (теорема 16.3). Если точки А, В, С, D не лежат в одной плоскости, то все они и никакие три из них не лежат на одной прямой. Так что имеем четыре возможные тройки точек (А, В, С), (А, В, D), (А, С, D) и (В, С, D), которые определяют четыре различные плоскости.