22. Докажите, что при движении в пространстве три точки, лежащие на прямой, переходят в три точки, также лежащие на одной прямой

§18. Декартовы координаты и векторы в пространстве → номер 22

Возьмем произвольные три точки А, В, С, лежащие на одной прямой.

Если В лежит между А и С, то АВ + ВС = АС, по определению движения получаем, что А’В’ + В’С’ = А’С’. Это означает, что В’ лежит на прямой А’С’, и В’ лежит между А’и С’.

Так как прямая, отрезок определяются двумя точками, то движение в пространстве переводит прямые в прямые.