Глава V. Метод координат в пространстве. § 3. Движения → номер 478 478. Найдите координаты точек, в которые переходят точки А(0; 1; 2), В (3; — 1; 4), С(1; 0; —2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координатных плоскостей.
А)
Точка
Симметричная ей точка
A (0; 1, 2),
A1 (0; -1; -2);
B (3; -1; 4),
B1 (-3; 1; -4);
С (1; 0; -2),
С1 (-1; 0; 2).
Б)
Ось симметрии — ось Ох:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; -2);
B (3; -1; 4),
В1 (3; 1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Ось симметрии — ось Оу
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
B1 (-3; -1; -4);
С(1; 0; -2),
С1 (-1; 0; 2).
Ось симметрии — ось Oz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (-3; 1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
В)
Если плоскость симметрии — плоскость Оху, то:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
В1 (3; -1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Плоскость симметрии — плоскость Oyz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; 2);
B (3; -1; 4),
B1 (-3; -1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
Плоскость симметрии — плоскость Oxz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (3; 1; 4);
С (1; 0; -2),
С1 (1; 0; -2).