На первый вопрос — через сколько дней в школе соберутся одновременно все 5 кружков — мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберется снова 5 кружков: слесарный — через 30 двухдневных промежутков, столярный — через 20 трехдневных, фотокружок — через 15 четырехдневных, шахматный — через 12 пятидневок и хоровой — через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет еще через 60 дней, т. е. уже во втором квартале.
Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.
Хлопотливее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы слесарного кружка, т. е. числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы столярного кружка: 4-й, 7-й, 10-й, и т. д. После того как зачеркнем затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачеркнутыми те дни первого квартала, когда ни один кружок не работал.
Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно: 2-го, 8-го, 12-го, 14-го, 18-го, 20 го, 24-го и 30-го. В феврале насчитывается 7 таких дней, в марте — 9.