Мерная линейка или лента не всегда оказывается под руками, и полезно уметь обходиться как-нибудь без них, производя хотя бы приблизительные измерения.
Мерить более или менее длинные расстояния, например, во время экскурсий, проще всего шагами. Для этого нужно знать длину своего шага и уметь шаги считать. Конечно, они не всегда одинаковы: мы можем делать мелкие шаги, можем при желании шагать и широко. Но все же при обычной ходьбе мы делаем шаги приблизительно одной длины, и если знать среднюю их длину, то можно без большой ошибки измерять расстояния шагами.
Чтобы узнать длину своего среднего шага, надо измерить длину многих шагов вместе и вычислить отсюда длину одного. При этом, разумеется, нельзя уже обойтись без мерной ленты или шнура.
Вытяните ленту на ровном месте и отмерьте расстояние в 20 м. Прочертите эту линию на земле и уберите ленту. Теперь пройдите по линии обычным шагом и сосчитайте число сделанных шагов. Возможно, что шаг не уложится целое число раз на отмеренной длине. Тогда, если остаток короче половины длины шага, его можно просто откинуть; если же длиннее полушага, остаток считают за целый шаг. Разделив общую длину 20 м на число шагов, получим среднюю длину одного шага. Это число надо запомнить, чтобы, когда придется, пользоваться им для промеров.
Чтобы при счете шагов не сбиться, можно — особенно на длинных расстояниях — вести счет следующим образом. Считают шаги только до 10; досчитав до этого числа, загибают один палец левой руки. Когда все пальцы левой руки загнуты, т. е. пройдено 50 шагов, загибают один палец на правой руке. Так можно вести счет до 250, после чего начинают сызнова, запоминая, сколько раз были загнуты все пальцы правой руки. Если, например, пройдя некоторое расстояние, вы загнули все пальцы правой руки два раза и к концу пути у вас окажутся загнутыми на правой руке 3 пальца, а на левой 4, то вами сделано было шагов
2 X 250 + 3 X 50 + 4 X 10 = 690.
Сюда нужно прибавить еще те несколько шагов, которые сделаны после того, как был загнут в последний раз палец левой руки.
Отметим попутно следующее старое правило: длина среднего шага взрослого человека равна половине расстояния его глаз от ступней.
Другое старинное практическое правило относится к скорости ходьбы: человек проходит в час столько километров, сколько шагов делает он в 3 сек. Легко показать, что правило это верно лишь для определенной длины шага и притом для довольно большого шага. В самом деле: пусть длина шага х м, а число шагов в 3 сек. равно n. Тогда в 3 сек. пешеход делает nх м, а в час (3600 сек.) — 1200 nх м, или 1,2 nх км. Чтобы путь этот равнялся числу шагов, делаемых в 3 сек., должно существовать равенство: 1,2nх = n или 1,2x = 1, откуда
Х = 0,83 м.
Если верно предыдущее правило о зависимости длины шага от роста человека, то второе правило, сейчас рассматриваемое, оправдывается только для людей среднего роста — около 175 см.