№ 21. Докажите, что у равных треугольников ABC и A1B1C1: 1)медианы, проведенные из вершин А и А1, равны; 2) биссектрисы, проведенные из вершин А и А1, равны

§ 3. Признаки равенства треугольников → номер 21

1)

∠С = ∠C1, ∠А = ∠А1, ∠В = ∠В1

ВО = ОС = В1О1 = О1С1, т. к. АО и А1О1 — медианы, и ВС = В1С1.

В ΔАОС и ΔА1О1С1: АС = А1С1, ОС = О1С1, ∠С = ∠С1. Таким образом, ΔАОС = ΔА1О1С1 по 1-му признаку, откуда АО = А1О1. 2)

Т. к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т. к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.

Т. к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т. к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.