59. Докажите, что через точку А, не лежащую в плоскости α, проходит плоскость, параллельная плоскости α, и притом только одна

Глава I Параллельность прямых и плоскостей. §3 Параллельность плоскостей → номер 59

Решение. Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.

Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость &alpha (задача 58).