Search Results

814. Все высоты тетраэдра пересекаются в точке Н. Докажите, что точка Н, центр О описанной сферы и точка G пересечения отрезков, соединяющих вершины с точками пересечения медиан противоположных граней тетраэдра, лежат на одной прямой (прямая Эйлера), прич

Задачи повышенной трудности → номер 814 814. Все высоты тетраэдра пересекаются в точке Н. Докажите, что точка Н, центр О описанной сферы и точка G пересечения отрезков, соединяющих вершины с точками пересечения медиан противоположных граней тетраэдра, лежат на одной прямой (прямая Эйлера), причем точки О и H …
Подробнее…

815. Дан тетраэдр, все высоты которого пересекаются в одной точке. Докажите, что точки пересечения медиан всех граней, основания высот тетраэдра и точки, которые делят каждый из отрезков, соединяющих точку пересечения высот с вершинами, в отношении 2:1, с

Задачи повышенной трудности → номер 815 815. Дан тетраэдр, все высоты которого пересекаются в одной точке. Докажите, что точки пересечения медиан всех граней, основания высот тетраэдра и точки, которые делят каждый из отрезков, соединяющих точку пересечения высот с вершинами, в отношении 2:1, считая от вершины, лежат на …
Подробнее…

1. Точки A, B, C, D не лежат в одной плоскости. Докажите, что прямые AB и CD не пересекаются.1

§15. Аксиомы стереометрии и их простейшие следствия → номер 1 1 Условия заданий приводятся в учебных целях и в необходимом объеме как иллюстративный материал. Имя автора и название цитируемого издания указаны на титульном листе данной книги. (Ст. 19 п. 2 закона РФ об авторском праве и смежных …
Подробнее…

2. Можно ли через точку пересечения двух данных прямых провести третью прямую, не лежащую с ними в одной плоскости? Ответ объясните

§15. Аксиомы стереометрии и их простейшие следствия → номер 2 Можно. Пусть прямые a и b пересекаются в точке C и лежат в плоскости α (аксиома 3). Тогда возьмем точку D вне плоскости α (по аксиоме 1) и рассмотрим прямую CD. Эта прямая и не принадлежит плоскости …
Подробнее…