Archive for марта, 2013

34. 1) Докажите, что прямая, пересекающая параллельные плоскости, пересекает их под равными углами. 2) Докажите, что плоскость, пересекающая параллельные прямые, пересекает их под равными углами

§18. Декартовы координаты и векторы в пространстве → номер 34 1) В параллельных плоскостях α и β, через точки пересечения их с данной прямой а проведем прямые b и с, параллельные между собой. Углы γ и φ равны (соответственные углы при параллельных прямых b и с, секущей …
Подробнее…

35. Точка А отстоит от плоскости на расстояние h. Найдите длины наклонных, проведенных из этой точки под следующими углами к плоскости: 1) 30°; 2) 45°; 3) 60°

§18. Декартовы координаты и векторы в пространстве → номер 35 Задача решена в учебнике п. 166 стр. 48.

37. Отрезок длиной 10 м пересекает плоскость, концы его находятся на расстояниях 2 м и 3 м от плоскости. Найдите угол между данным отрезком и плоскостью

§18. Декартовы координаты и векторы в пространстве → номер 37 Из концов А и В, данного отрезка опустим перпендикуляры АА1 и ВВ1 на плоскость. Тогда АА1 = 2 м, ВВ1 = 3 м, АВ = 10 м. ∠BOB1 — искомый. Проведем АС ⊥ ВВ1, тогда OB1||AC и …
Подробнее…

38. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные, образующие с плоскостью углы 45° и 30°, а между собой прямой угол. Найдите расстояние между концами наклонных

§18. Декартовы координаты и векторы в пространстве → номер 38 Пусть DC и DB данные наклонные. Проведем AD — перпендикуляр к плоскости α. АВ и АС — проекции наклонных DB и DC на плоскость α. Треугольники DAB и DAC — прямоугольные. Так что DC = а : …
Подробнее…