Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью. → номер 153 Решение. Прямая а перпендикулярна к плоскости АМН, так как она перпендикулярна к двум пересекающимся прямым этой плоскости (a⊥AM по условию и а ⊥АН, так как АН ⊥ а). Отсюда …
Подробнее…
153. Докажите, что прямая а, проведенная в плоскости а через основание М наклонной AM перпендикулярно к ней, перпендикулярна к ее проекции НМ (см. рис. 53)
154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите: а) расстояние от точки D до прямой AC; б) площадь треугольника ACD
Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью. → номер 154 Дано: Решение: А) Проведем ВЕ ⊥ АС, СЕ = ЕА, так как ΔАВС — равнобедренный и высота является также медианой. То по теореме о 3-х перпендикулярах DE ⊥ AC. …
Подробнее…
155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = 2 √7 см
Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью. → номер 155 Дано: Решение: То по теореме о 3-х перпендикулярах МН ⊥ АВ. (соотношения в прямоуголь Ном треугольнике). Ответ: 6 см.
156. Один из катетов прямоугольного треугольника ABC равен т, а острый угол, прилежащий к этому катету, равен φ. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = n. Найдите расстояние от точки D д
Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью. → номер 156 156. Один из катетов прямоугольного треугольника ABC равен т, а острый угол, прилежащий к этому катету, равен φ. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости …
Подробнее…