Archive for марта, 2013

240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды

Глава III Многогранники. § 2. Пирамида → номер 240 240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды. Пусть точка О—точка …
Подробнее…

241. Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды

Глава III Многогранники. § 2. Пирамида → номер 241 Пусть АВ = 5 м, АD = 4 м, BD = Зм и PO = 2 м. Заметим, что АВ2 = AD2 + BD2 и значит ∠BDA = 90°. Но OD — проекция PD на плоскость ABCD. Поэтому …
Подробнее…

242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найд

Глава III Многогранники. § 2. Пирамида → номер 242 242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найдите: а) высоту пирамиды; …
Подробнее…

243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды

Глава III Многогранники. § 2. Пирамида → номер 243 Заметим, что ΔDAB и ΔDAC прямоугольные, поэтому Найдем SDBC: проведем медиану AM и ΔАВС. Тогда AM — высота (т. к. AB = AC). Но AM — проекция DM на плоскость АВС, поэтому DM ⊥ ВС. По теореме Пифагора: …
Подробнее…