Archive for марта, 2013

695. Найдите объем треугольной пирамиды SABC, если: а) ∠САВ = 90°, ВС = с, ∠АВС=φ и каждое боковое ребро составляет с плоскостью основания угол Θ; б) АВ= 12 см, ВС = CA = 10 см и двугранные углы при основании равны 45°; в) боковые ребра

Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса → номер 695 695. Найдите объем треугольной пирамиды SABC, если: а) ∠САВ = 90°, ВС = с, ∠АВС=φ и каждое боковое ребро составляет с плоскостью основания угол Θ; б) АВ= 12 см, ВС = CA …
Подробнее…

696. Основанием пирамиды DABC является треугольник, в котором АВ = 20 см, AC = 29 см, ВС = 21 см. Грани DAB и DAC перпендикулярны к плоскости основания, а грань DBC составляет с ней угол в 60°. Найдите объем пирамиды

Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса → номер 696 DA — высота пирамиды. Построим АК⊥ВС, отрезок DK. По теореме о трех перпендикулярах DK⊥BC, ∠AKD=60° — линейный угол двугранного угла DBCA. ΔABC — прямоугольный по теореме Пифагора (202+212=292). Следовательно, И Точка К …
Подробнее…

697. Стороны оснований правильной усеченной треугольной пирамиды равны а и 0,5а, апофема боковой грани равна а. Найдите объем усеченной пирамиды

Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса → номер 697 Проведем МТ перпендикулярно AN. Из ΔMTN:

698. Основания усеченной пирамиды — равнобедренные прямоугольные треугольники, гипотенузы которых равны m и n (m>n). Две боковые грани, содержащие катеты, перпендикулярны к основанию, а третья составляет с ним угол φ. Найдите объем усеченной пирами

Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса → номер 698 698. Основания усеченной пирамиды — равнобедренные прямоугольные треугольники, гипотенузы которых равны m и n (m>n). Две боковые грани, содержащие катеты, перпендикулярны к основанию, а третья составляет с ним угол φ. Найдите объем …
Подробнее…