Archive for марта, 2013

741. Основанием четырехугольной пирамиды, высота которой равна Н, является параллелограмм. Диагонали параллелограмма пересекаются под углом α. Попарно равные противоположные боковые ребра пирамиды образуют с плоскостью основания углы β; и &gamma

Дополнительные задачи к главе VII → номер 741 741. Основанием четырехугольной пирамиды, высота которой равна Н, является параллелограмм. Диагонали параллелограмма пересекаются под углом α. Попарно равные противоположные боковые ребра пирамиды образуют с плоскостью основания углы β и γ. Найдите объем пирамиды. Из прямоугольного треугольника POD: Из прямоугольного …
Подробнее…

742. Основанием пирамиды является ромб со стороной а. Две боковые грани пирамиды перпендикулярны к плоскости основания и образуют тупой двугранный угол φ. Две другие боковые грани составляют с плоскостью основания двугранные углы Θ. Найдите объе

Дополнительные задачи к главе VII → номер 742 742. Основанием пирамиды является ромб со стороной а. Две боковые грани пирамиды перпендикулярны к плоскости основания и образуют тупой двугранный угол φ. Две другие боковые грани составляют с плоскостью основания двугранные углы Θ. Найдите объем пирамиды. Линия пересечения двух …
Подробнее…

743. Два ребра тетраэдра равны b, а остальные четыре ребра равны а. Найдите объем тетраэдра, если ребра длины b: а) имеют общие точки; б) не имеют общих точек

Дополнительные задачи к главе VII → номер 743 а) Пусть АС=АВ=b, а DA=DB=DC=BC=a. Построим высоту пирамиды DO, отрезки ОА, ОВ, ОС. Тогда, ОА=ОВ=ОС=R, где R — радиус Окружности, описанной вокруг ΔАВС. В равнобедренном треугольнике ΔВАС проведем из угла А высоту АК. ОА=R по формуле (a, b, с …
Подробнее…

744. В усеченной пирамиде соответственные стороны оснований относятся как 2:5. В каком отношении делится ее объем плоскостью, проходящей через середину высоты этой пирамиды параллельно основаниям?

Дополнительные задачи к главе VII → номер 744 Обозначим По условию Рассмотрим трапецию АА1О1О. РК||АО, отрезок РК — средняя линия трапеции, значит, А1Р=РА. Рассмотрим грань АА1В1В. Это трапеция, через точку Р проведен отрезок PQ||АВ, поэтому PQ является средней линией трапеции. Тогда, Площади подобных фигур относятся как квадраты …
Подробнее…