§17. Перпендикулярность прямых и плоскостей → номер 27 Пусть ΔАВС — данный. Проведем AA1 и BB1 перпендикулярны к α, тогда АА1 = ВВ1 = 1 м — расстояние от гипотенузы до плоскости α. А1С и В1С — проекции наклонных AC и BC на плоскость α. Тогда в …
Подробнее…
27. Через вершину прямого угла С прямоугольного треугольника АВС проведена плоскость, параллельная гипотенузе, на расстоянии 1 м от нее. Проекция катетов на эту плоскость равны 3 м и 5 м. Найдите гипотенузу
28. Через одну сторону ромба проведена плоскость на расстоянии 4 м от противолежащей стороны. Проекции диагоналей на эту плоскость равны 8 м и 2 м. Найдите проекции этих сторон
§17. Перпендикулярность прямых и плоскостей → номер 28 Из точек В и С опустим перпендикуляры ВВ1 и СС1 на плоскость α; ВВ1 = СС1 = 4м. АС1 — проекция диагонали АС на плоскость α, В1D — проекция диагонали BD на плоскость α. Так что АС1 = 8 …
Подробнее…
30. Докажите, что расстояние от всех точек плоскости до параллельной плоскости одинаковы
§17. Перпендикулярность прямых и плоскостей → номер 30 Выберем произвольные точки А и В на плоскости α, параллельной плоскости β. Прямая АВ лежит в плоскости α поэтому параллельна плоскости β. Опустим перпендикуляры АА1 и ВВ1 на плоскость β. По теореме 18.4 прямые АА1 и ВВ1 параллельны и …
Подробнее…
31. Расстояние между двумя параллельными плоскостями равно а. Отрезок длины b своими концами упирается в эти плоскости. Найдите проекцию отрезка на каждую из плоскостей
§17. Перпендикулярность прямых и плоскостей → номер 31 Пусть плоскости α и β параллельны. BD — данная наклонная. Проведем BA⊥β и DC⊥α. Тогда CD = АВ — расстояние между параллельными плоскостями α и β. Так что AB = CD = a. Проекции наклонной BD на плоскости α …
Подробнее…